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The mathematical formulation of the model for molecular movement of single motor pro-
teins driven by cyclic biochemical reactions in an aqueous environment leads to a drifted
Brownian motion characterized by coupled diffusion equations. In this article, we introduce
the basic notion for the continuous model and review some asymptotic solutions for the prob-
lem. (For the lattice model see [17,47].) Stochastic, non-equilibrium thermodynamic inter-
pretations of the mathematical equations and their solutions are presented. Some relevant
mathematics, mainly in the field of stochastic processes, are discussed.
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1. Introduction

One of the fascinating aspects of protein molecules in the biological world is their
ability to perform various, almost “magic-like” tasks [16]. A particular class of proteins
known as molecular motors can move linearly along its designated track against an ex-
ternal force by utilizing the biochemical energy source, adenosine triphosphate (ATP).
In this manner, the motor proteins act as miniature engines converting chemical energy
to mechanical work. Movement of single protein molecules inside a cell, however, has
to experience thermal agitation from the aqueous environment in the cytosol. The move-
ment is, therefore, a Brownian motion with drift (convective diffusion) [6].

Such movement provides the molecular basis for muscle contraction and various
cellular transport processes [24,25]. Motor protein kinesis is known to carry out intra-
cellular vesicle transport along microtubules. Various polymerases are moving along
their corresponding templates. All these processes are essential to a living cell. In a
muscle cell, the motor protein is called myosin, and its designated track is called an actin
filament. The actin filament has a periodic structure of∼36 nm. Therefore, without loss
of generality, we assume that a myosin molecule moves in a force field with periodic
potential energy functionU(x): U(x + L) = U(x), whereL is 36 nm for actin.
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Treating the center of mass of the motor protein as a Brownian motion with the
presence of a periodic energy potential, its movement can be modeled by the Smolu-
chowski equation [62]

∂P (x, t)

∂t
= − ∂

∂x
J (x, t) = D ∂2P(x, t)

∂x2
− ∂

∂x

(
F(x)

β
P (x, t)

)
, (1)

whereD and β are respectively the diffusion and frictional coefficients.F(x) =
−dU(x)/dx is the force of the potentialU , representing the molecular interaction be-
tween the motor protein and its track.P(x, t) is the probability density function of the
motor protein at positionx for time t . The first equality in equation (1) is a continu-
ity equation in whichJ is a probability flux. The first term on the right-hand side is
associated with the diffusion flux according to Fick’s law. The second term is due to
the convection associated with an overdamped Newtonian motion:−βẋ + F(x) = 0.
In fact, equation (1) is mathematically equivalent to an overdamped Newtonian motion
with a white random forcef (t) representing the incessant collisions between the motor
protein and the water molecules:βẋ − F(x) = f (t) [62].

The probability densityP(x, t), as the solution to equation (1), gives the mean
position of the motor

〈x〉(t) =
∫ ∞
−∞

xP (x, t)dx. (2)

Moreover, its velocity is related to the fluxJ (x, t):

d

dt
〈x〉(t) =

∫ ∞
−∞

x
∂P (x, t)

∂t
dx = −

∫ ∞
−∞

x
∂J (x, t)

∂x
dx =

∫ ∞
−∞

J (x, t)dx. (3)

When the motion of a motor protein becomes steady and if we are only interested in
the mean velocity, we need only consider the steady-state solution forx ∈ [0, L] with
periodic boundary conditions. With this setting, the steady-state velocity of the motor
protein movement isv = LJ . Therefore studies on the steady-state movement focus on
the fluxJ. To fix our terminology, we will refer a stationary solution as a steady-state,
but a stationary solution with zero flux as an equilibrium.

A little mathematical analysis immediately shows that forU(0) = U(L), i.e.∫ L
0 F(x)dx = 0, the stationary solution of (1) allows only zero flux(J = 0). Therefore,

in a one-dimensional periodic structure, there is no driving force to bias an inert Brown-
ian particle to move in either direction. The simple model given by (1) fails to capture
the essence of the motor protein movement.

The driving force for a motor protein comes from a very important biochemical
reaction, occurring inside the protein, called ATP hydrolysis:

ATP+ H2O
f


g

ADP+ Pi,
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where H2O is water, ADP is adenosine diphosphate, and Pi is phosphate. Chemical reac-
tions like this are well characterized by a two-state Markov process (or more generally,
m discrete states)

dPATP

dt
=−fPATP+ gPADP,

(4)
dPADP

dt
= fPATP− gPADP,

where non-negativef andg are rate constants for the reaction [35]. The deeply insight-
ful work of Sir Andrew Huxley in 1957 was to introduce internal conformational states
to the Brownian particle and to couple the (bio)chemical reaction in (4) with the motor
protein movement in (1) [25]. This leads to the following equation [3,26,42,46], known
as a coupled diffusion system in mathematics [53], for the movement of a Brownian
particle with internal structures and dynamics:

∂P (x,−)
∂t

=D− ∂
2P(x,−)
∂x2

+ 1

β−
∂

∂x

(
dU−
dx

P (x,−)
)
− f (x)P (x,−)

+ g(x)P (x,+),
(5)

∂P (x,+)
∂t

=D+ ∂
2P(x,+)
∂x2

+ 1

β+
∂

∂x

(
dU+
dx

P (x,+)
)
+ f (x)P (x,−)

− g(x)P (x,+),
wheref (x) andg(x) are non-negative periodic functions. In terms of this augmented
Huxley model, the motor protein can be either attached to(+) or detached from(−) the
actin filament with respective interaction energy functionsU+(x) andU−(x). (In the
original Huxley model,U−(x) = 0.) D± (β±) are the diffusion (friction) coefficients of
the motor protein in the attached and detached states, respectively. The attach–detach
transition is coupled to the ATP hydrolysis. Therefore, in (5) the biochemical reaction is
coupled to the movement of the motor protein. More importantly, note that in either the
attached or detached state, there is no bias for the motor protein movement!However,
the attach–detach transition driven by the ATP hydrolysis leads to a biased motion of
the motor protein(J 6= 0). The chemical energy in ATP is converted to the mechanical
motion of the motor protein.This we shall show.

At this point, it is fascinating to read the now classic work of Huxley on the theory
of muscle contraction, which was written decades before the discovery of the motor pro-
tein molecule in its individual form. The Huxley model works as follows [25, p. 281].
Initially, the myosin (M) and actin filament (A) are detached; M oscillates (fluctuates)
back and forth about its equilibrium positionO as a result of thermal agitation (with dif-
fusion coefficientD− for the Brownian motion). If A happens to be within the range of
positions wheref , the rate of association, is not zero, there is a chance that combination
will take place (this event happens with a probability characterized by the Markov rate
process); when this has happened the tension in the elastic element (F , i.e. the molecular
interaction between M and A) will be exerted on the actin thread by M (and, conversely,
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the actin will exert the same force with opposite sign on M). As one can see, equation (5)
is the mathematical formulation of this model described in words. Readers who check
Huxley’s paper will find several differences between his original equation and (5). These
differences arise because we have formulated amicroscopicmodel for single motor pro-
teins while a model for muscle contraction has to deal with a large number of myosin
molecules. It can be shown that when stringing many motor proteins into a rigid chain,
Huxley’s original equation can be derived from equation (5) [26].

Since the work of Huxley, there have been many investigations following and
expanding the basic notion of the Huxley equation. Most notable are the work of
Hill [22,23] who provided the Huxley equation with a sound thermodynamic basis, and
the work of Astumian and Bier, and Peskin et al. who arrived at (5) from the Langevin
dynamics (stochastic differential equation) point of view [2,42]. There is also a body
of literature on Brownian ratchet, whose basic movement is characterized by equa-
tions identical to (5) [1,7,11,43,63].1 In a recent paper, Bentil [5] applied the Huxley
model in conjunction with Langevin dynamics to simulate single myosin experiments.
Qian [46,48,51] established a relationship between coupled diffusion like (5) and the
circulation of a Markov process and its entropy production [27].

Equation (5) is certainly an oversimplified model for any realistic biological sys-
tem. However, it captures the essence of a theory which unifies microscopic motor
protein movement and macroscopic muscle contraction; thereby it provides a concrete
model for chemomechanical energy transduction in living organism. Hence, it deserves
further detailed investigation as a topic in biophysics and physical chemistry. The mathe-
matical treatment of (5) has been mainly in terms of differential equations. However, the
nature of Brownian motion of the motor protein also calls for a treatment of (5) in terms
of stochastic processes. We will review some of the pertinent mathematics in section 4.

2. Mathematical analysis of several limiting cases of augmented Huxley
equation

While the augmented Huxley equation (5) is difficult to solve in general due to the
non-local (non-equilibrium) nature of the steady-state, particular limiting cases can be
analyzed to gain insights into the theoretical model. In this section, we present some
known and also some new results.

2.1. Limit of rapid biochemical cycling

One particularly interesting limiting case is when the biochemical reactions are
rapid with respect to the diffusion. Analysis of this limiting case clearly demonstrates
how the internal biochemical reaction can give rise to a unidirectional motor protein

1 It is important here to qualify the term “Brownian ratchet” which does not involve any temperature gradi-
ent [43]. It is an isothermal device in which useful work is derived from nonequilibrium fluctuations. It
violates the detailed balance due to active pumping [45,46].
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movement. Hence, it demonstrates the validity of mathematical models for motor pro-
teins in terms of coupled diffusion equations.

Consider equation (5), rapid biochemical reaction means we have conditional prob-
abilities2

P(−|x) = g(x)

f (x)+ g(x) , P (+|x) = f (x)

f (x)+ g(x)
and thusP(x) = P(x,−)+ P(x,+) satisfies

∂P (x)

∂t
= ∂2

∂x2

(SD(x)P (x, t)) − ∂

∂x

(SF(x)P (x)) (6)

in which

SD(x) = f (x)D+ + g(x)D−
f (x)+ g(x) , SF(x) = f (x)F+(x)+ g(x)F−(x)

f (x)+ g(x) .

Note that equation (6) is similar to equation (1) but with one crucial difference: The
mean force function now satisfies

∫ L
0
SF(x) 6= 0 even though bothF±(x) satisfy∫ L

0 F±(x)dx = 0. The potential of the average of forces of periodic potentials is in
general not periodic.This indicates thatthe biochemical reaction(4) provides a drift
for the motor protein movement in a periodic system.Finally, the transport flux can be
obtained by solving (6)

8 = 1− eu(L)∫ L
0 e−u(x) dx

∫ L
0 eu(x) dx − (1− eu(L))

∫ L
0 e−u(x) dx

∫ x
0 eu(x ′) dx′

, (7)

whereu(x) = − ∫ x0 SF(x)dx. Therefore, if
∫ L

0
SF(x)dx = −u(L) > 0,8 > 0. More

recent progress can be found in [31].

2.2. Limit of rapid diffusion

Another limiting case which has been nicely analyzed by Peskin et al. [42] is when
the diffusion is very rapid in comparison to the Markovian transition (Brownian ratchet):
there are rapid equilibria forP(x,−) andP(x,+).

The mathematical problem is framed as follows. Let us consider the stationary
coupled diffusion:

d2P(x,−)
dx2

+ d

dx

(
dU−(x)

dx
P (x,−)

)
− ε(f (x)P (x,−) − g(x)P (x,+))= 0,

(8)
d2P(x,+)

dx2
+ d

dx

(
dU+(x)

dx
P (x,+)

)
+ ε(f (x)P (x,−) − g(x)P (x,+))= 0,

2 Readers who are familiar with the method of singular perturbation will identify this problem. Since we
are seeking a nontrivial solution for a homogeneous equation, the solution is not unique. The functions
F± has at least two zeros at which boundary layers might be expected. For more detail on this type of
equations, see [39].
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wheref (x), g(x), U±(x) are periodic functions. When the regular perturbation para-
meterε = 0, this system of uncoupled diffusion has zero transport flux8. For smallε,
we therefore have8 = εφ + · · · and the asymptotics can be obtained by the method of
regular perturbation [4]. At this point it is important to notice the other flux, the circular
flux 5 which moves the motor protein forward in the(+)-state but moves it backward
in the(−)-state. Therefore5 does not contribute to the net transport but only generates
heat. This type of flux is known as futile cycle in muscle biochemistry [45].

Perturbation calculations show that [42]

5 = ε
∫ L

0 g(x)µ+(x)dx
∫ L

0 f (x)µ−(x)dx∫ L
0 g(x)µ+(x)dx + ∫ L0 f (x)µ−(x)dx

+O
(
ε2), (9)

and

8 = ε
∫ L

0
dx
[
ν+(x)− ν−(x)

] ∫ x

0
dx′
[
f
(
x′
)
µ−
(
x′
)− g(x′)µ+(x′)]+O

(
ε2
)
, (10)

where

µ− = e−U−(x)∫ L
0 e−U−(x) dx

, µ+ = e−U+(x)∫ L
0 e−U+(x) dx

,

ν− = eU−(x)∫ L
0 eU−(x) dx

, ν+ = eU+(x)∫ L
0 eU+(x) dx

.

It is interesting to note that iff (x)µ−(x) − g(x)µ+(x) = 0 ∀x, then the system
is reversible and the steady-state is in fact an (thermal) equilibrium. In mathematical
term, the Markov process is symmetric [61]. In applied mathematics, the symmetricity
leads to the Grassman–Matkowsky variational method [30]. More recent progress can
be found in [31].

2.3. Limit of the original Huxley model

In the original Huxley model, the interaction between the track and the motor in the
detached state is assumed to be zero. HenceU−(x) = 0 in equation (5). Furthermore, it
is also generally accepted thatD+ � D−, i.e. the Brownian motion of the motor protein
in the attached state is negligible. The solution of (5) whenD+ → 0 is a problem
of singular perturbations [30,36]. Note that because of the periodicU(x), F(x) has
zeros on[0, L]. Thus the singular perturbation problem has at least two linear turning
points [28,38]. The reduced equation whenD+ = 0 is:

d2P(x,−)
dx2

− f (x)P (x,−) + g(x)P (x,+) = 0,
(11)

− d

dx

(
F(x)P (x,+)) + f (x)P (x,−) − g(x)P (x,+) = 0,
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in which we have setD− = β+ = 1 for simplicity. We are particularly interested
in finding a condition for the existence of a solution corresponding to unidirectional
motion. In the steady-state, thetotal transportflux of the system is a constant3:

F(x)P (x,+) − dP(x,−)
dx

≡ 8. (12)

Using equation (12) and eliminatingP(x,+) from equation (11) we then have

F(x)
d2P(x,−)

dx2
+ g(x)dP(x,−)

dx
− F(x)f (x)P (x,−) = −8g(x), (13)

where the inhomogeneous term8 on the right-hand side is to be determined by the
normalization condition

∫ L
0 [P(x,+) + P(x,−)]dx = 1. The boundary conditions for

equation (13) again are periodic.
Equation (13) has singular points at the zeros ofF(x). A simple local analysis

shows that for nonzero8 and a physically meaningfulP(x,−) > 0, the solution to
equation (13) has to be non-analytic at these singularities. This non-analytic behavior,
however, is expected to be obviated in an asymptotic study of the full equation (5) with
smallD+.

3. Entropy production in nonequilibrium steady-state

We now give a brief discussion of the nonequilibrium thermodynamics in terms of
equation (5). Hill [22,23] has given an extensive account of this subject. We only discuss
some recent developments in connection with the notion of entropy production [40]. The
concept of entropy production rate (e.p.r.) can be easily introduced, mathematically, in
terms of equation (1). The validity of this novel thermodynamics of nonequilibrium
steady state (NESS), however, remains to be experimentally tested. For more discussion
see [46,48,52,55].

Associated with (1) is a functionalA[P(x)] called the Helmholtz free energy in
thermal physics [57], which in unitskBT (T is temperature andkB is the Boltzmann
constant) is defined as

A
[
P(x, t)

] = ∫ L

0
U(x)P (x, t)dx +

∫ L

0
P(x, t) logP(x, t)dx. (14)

3 We use8 to denote the transport fluxJ+ + J−. As will be shown below there is another type of flux,
circular and non-transport5 = J+ − J−, in these systems [46].
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WhenP(x, t) changes with time according to equation (1), the rate of production of
total entropy is the rate of decrease inA of the system4, which can be computed:

e.p.r. = −dA

dt
=−

∫ L

0
U(x)

dP(x)

dt
dx −

∫ L

0

dP(x)

dt
logP(x)dx

=
∫ L

0

(
U(x)+ logP(x)

) d

dx
J (x)dx

=
∫ L

0

(
F(x)− d

dx
logP(x)

)
J (x)dx

= 1

D

∫ L

0
J 2(x)P−1(x)dx > 0. (15)

The last step used the definition forJ given in equation (1). This is the second-law
of thermodynamics in terms of Smoluchowski equation, which is the nonequilibrium
counterpart of a canonical ensemble in statistical mechanics. Equation (15) can be gen-
eralized to calculating the entropy production rate (e.p.r.), as well as the heat dissipation
rate, in a non-equilibrium steady-state in whichStot continues to increase [50]. To see
this, we note that the entropy of the system is defined as

S
[
P(x, t)

] = − ∫ L

0
P(x, t) logP(x, t)dx. (16)

Therefore, in NESS,

Ṡ = −
∫ L

0
FJ dx + e.p.r. = 0, (17)

whereF = −dU/dx, and the first term on the right-hand side is the heat dissipation rate
(h.d.r.). Therefore, in a NESS, the e.p.r. is equal to the h.d.r.

Recent work in mathematical physics on entropy production in nonequilibrium sys-
tems [19] also focus on appropriately setting up the non-equilibrium steady-state with
an external force and a thermostat simultaneously acting on a Hamiltonian system. The
force supplies energy while the thermostat removes heat in order to keep the system in
a steady-state with bounded energy. This leads to arandom dynamical systemin which
entropy production is cogently defined [59]. The Smoluchowski approach we adopt has
a quite similar setting: a driving force due to chemical reaction (rather than mechan-
ical force) and an implicit thermostat: The Smoluchowski equation is a consequence

4 From thermodynamics stand point, a macromolecule is an isothermal system in contact with a thermal
environment (i.e. aqueous solution) with temperatureT . There is energy (heat), but no material, exchange
between the system and its environment (heat bath). The system and its environment as a whole is an
isolated system with a constant total energy; and this is approximately hold also for a sufficiently large
heat bath. In mathematical terms, we have dA/dt = dE/dt − T dS/dt whereE is the internal energy of
the system andS is the entropy of a system. With respect to the system and the environment together as a
whole dA = (dEtot− dEenv)− T (dStot− dSenv) = −T dStot+ (T dSenv− dEenv) ≈ −T dStot. For an
isolated system (microcanonical ensemble),∂Eenv/∂Senv= T [57].
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of an overdamped Newtonian system with Maxwellian distribution for the velocity of
the particles [62]. In fact, the diffusion coefficientD and frictional coefficientβ in (1)
define the temperature of the thermostat:T = βD/kB. The interesting mathematical
questions are when these random dynamical systems become diffusion processes and
whether the entropy production proposed in these studies is equivalent to equation (15)
for diffusion processes [52]. The recent work by Lebowitz and Spohn [32] has provided
some insights on this problem. In a different approach to weak random perturbation of
Hamiltonian systems in a plane, Freidlin and Wentzell map the system to a diffusion
process on a graph, which consists of vertices corresponding to the stationary states and
edges corresponding to energy basins [18]. However, this approach remains to be gener-
alized to higher-dimensional Hamiltonian systems, and its relationship to the (Kramers’)
transition-state rate theory in theoretical chemistry [21] also remains to be elucidated.

It is interesting to note that in a steady state, the fluxJ is a constant and all the en-
tropy produced will become the dissipated heat. Hence, e.p.r. = (J 2/D)

∫ L
0 P

−1(x)dx >
J 2L2/D which equalsβJ 2L2 due to the Einstein relation inkBT unitsDβ = 1. The
βJ 2L2 term is the energy dissipation due to a deterministic motion with velocityv = LJ
and frictional coefficientβ in continuous medium. The inequality indicates the addi-
tional dissipation due to random motion. It also indicates that whenP(x) = const, the
e.p.r. is at its minimum, i.e., the chemomechanical energy transduction is at its maximal
efficiency.

To generalize the concept of entropy production to equation (5) is mathematically
straightforward. This yields a novel thermodynamic theory for NESS, which is partic-
ularly relevant to motor proteins. The importance of the theory is that it relates e.p.r. to
the heat production of a working motor, which is a quantity that can be experimentally
measured. With some simple algebra, we have

h.d.r.=
∫ L

0

[
F+(x)J+(x)+ F−(x)J−(x)+ j (x) log

(
f (x)

g(x)

)]
dx, (18)

e.p.r.=
∫ L

0

[
J 2
+(x)P (x,+) + J 2

−(x)P (x,−) + j (x) log

(
f (x)P (x,−)
g(x)P (x,+)

)]
dx, (19)

in which

J±(x) = −dP(x,±)
dx

+ F±(x)P (x,±),
and

j (x) = f (x)P (x,−) − g(x)P (x,+).
It is obvious that e.p.r. is non-negative and equal to zero if and only if the detailed balance
is hold [26,51]. In NESS without external load, h.d.r.= e.p.r.

If there is an external loadFext, then equation (18) can be further broken down into

kBT ln

( [ATP]
[ADP][Pi] e

1G0
ATP

)∫ L

0
j (x)dx − Fext(J+ + J−)L. (20)
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Hence, the free energy from ATP hydrolysis is equal to exactly the sum of the work done
against the external load,Fextv, and positive heat dissipation, equation (19).

4. Some relevant mathematics on coupled diffusion

While P(x, t) in equation (1) characterizes a stochastic processX t in terms of
probability density at each timet , P(x, t)dx = Prob{x 6 X t 6 x + dx}, there is an
alternative view of a stochastic process in terms of itstrajectories. In this approach, all
possible trajectories{X t | t > 0} form a function space� and a probability density (a
measure) is defined. This naturally leads to the notion of “propagator” (a semi-group)
which is formally defined as

P(x, t) = P(x,0)eLt , (21)

where the exponential operator eLt acts on the distributionP(x,0) as a “row vector”.
The operatorL satisfies the backward Kolmogorov equation:

∂P (x, t)

∂t
= P(x, t)L, (22)

or its conjugateL∗ satisfies the forward Kolmogorov (or Fokker–Planck) equation:

∂P (x, t)

∂t
= L∗P(x, t). (23)

For symmetric operatorL∗ = L. The symbolic relationship between the operatorL
and the propagator eLt has been made rigorous in terms of linear operators in a Banach
space and is known as Hille–Yosida theorem. Hence the modern theory of Brownian
motion has brought several mathematical disciplines to bear [15,29]: partial differential
equations, linear operators on functional spaces, and harmonic analysis.

4.1. Feynman–Kac formula

A major result in this area is a relationship between the solution of a boundary
value problem (BVP) and the mean exit time (first passage time) of a diffusion process.
This relation also has the potential for devising numerical methods for solving BVP. Let
us now consider a Brownian motion in a domainD with the diffusion equation (23) and
Dirichlet boundary conditions on∂D. Now differentiate equation (23) with respect tot ,
and then multiply at and integrate overt ∈ (0,∞), we have∫ ∞

0
t
∂2P(x, t)

∂t2
dt = L∗

∫ ∞
0
t
∂P (x, t)

∂t
dt. (24)

If one interpretsP(x, t | x0) as the probability of the Brownian particle atx at time t
starting atx0 whent = 0, then

u(x0) = −
∫
D

dx
∫ ∞

0
t
∂P (x, t | x0)

∂t
dt
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is the mean time of the particle started atx0 to exitD. The left-hand side of (24) can be
simplified into [

t
∂P (x, t)

∂t
− P(x, t)

]∞
0

= δ(x − x0).

If now we multiply a functionφ(x), which satisfiesLφ(x) = ψ(x) with (24) and then
integrate overx ∈ D, we have

φ(x0)=
∫
D

dxφ(x)L∗
∫ ∞

0
t
∂P (x, t)

∂t
dt

=
∫
D

dx
(
Lφ(x)

) ∫ ∞
0
t
∂P (x, t)

∂t
dt

=
∫
D

ψ(x)dx
∫ ∞

0
t
∂P (x, t)

∂t
dt

=−Ex0

[∫ τD

0
ψ(Xs)ds

]
.

This shows that the right-hand side, in whichX t is the probabilistic Brownian motion
andEx0[·] is the average along the paths ofX t started atx0, satisfies the inhomogeneous
ODE

Lu(x) = −ψ(x). (25)

This is the well-known Feynman–Kac formula [37]. Whenψ(x) ≡ 1, u(x) is the mean
exit time of the Brownian motionX t .

4.2. Random evolution

While a deterministic dynamic equation coupled to a white noise is called asto-
chastic differential equationand leads to Brownian motion [37], a deterministic dynamic
(evolution) equation coupled to a Markov process is calledrandom evolution[44]. This
is a class of stochastic models characterized by a system of equations like

∂P (x,−)
∂t

=− ∂

∂x

(
F−(x)P (x,−)

) − f (x)P (x,−) + g(x)P (x,+),
(26)

∂P (x,+)
∂t

=− ∂

∂x

(
F+(x)P (x,+)

) − f (x)P (x,−) − g(x)P (x,+).
There is no diffusive motion in the movement. A particle follows deterministic ODEs
ẋ = F±(x) and jumps between(+) and (−) states. Equations like (26) have wide
applications in chemistry and biology. For example, the stochastic averaging problem
in nuclear magnetic resonance spectroscopy is precisely such a problem [41,47]. For a
recent work, see [14].

For largef andg, the motion is approximately

ẋ = g(x)F−(x)+ f (x)F+(x)
g(x)+ f (x) .
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For extremely largef andg, the Markovian process approaches a rapidly varying white
noise and (26) again approaches a diffusion equation [47]. In spectroscopy, this corre-
sponds to two distinct spectral lines merging into a single broad peak.

For smallf andg, if bothF−(x) andF+(x) have zeros, then the motion of the par-
ticle is still qualitatively simple: the particle will stay at a(+) fixed point, jumps to(−),
relaxes to a(−) fixed point, and stays there until jumping to(+) and relaxing back to
the (+) fixed point, or relaxing to another(+) fixed point. If the twoF ’s are arranged
appropriately, the particle can be continuously unidirectionally transported, step by step,
as demonstrated in [2].

One insight from this discussion is that though equation (11) has no appropriate
stationary solution, the time-dependent solution should be well behaved. This points out
that one should approach the time-dependent solution of (11) rather than its stationary
solution (equation (13)).

4.3. Small diffusion and the theory of large deviation

Is the dynamics of the degenerate equation (26) the limiting behavior of equa-
tion (5) whenD± → 0? This is clearly an important mathematical question which also
has significant relevance to the modeling of muscle contractions. As we have stated, one
way to address this question is to develop a complete singular perturbation theory for (5).
There is, however, also a stochastic approach calledtheory of large deviations[13] which
in recent years has thrown much light on the problem. A combination of both approaches
is undoubtedly desirable. This technically very demanding task has been carried out in
several occasions, for example in [34]. For a review, see [60].

5. Deterministic vs. stochastic motion of molecular motors

While there is no doubt that the motor protein movement is a drifted Brownian
motion, the extent of the randomness in the motion can be quantitatively characterized
according to the mathematical model. Let us now again consider equation (5) in which
there is no force in the detached state(−). As we have discussed above, in the limit
of bothD± = 0, the motion will be trapped at the zeros ofF(x). This indicates the
importance of nonzeroD− for the motor movement in this model, as has been repeatedly
pointed out by Peskin et al. [42,43].

On the other hand, whenF−(x) 6= 0, a motor protein can move strictly in one direc-
tion in a random evolution model. Diffusion plays no role in this mechanism. These two
different modes of movement correspond nicely with “Brownian ratchet” and “power
stroke” in the biochemical literature. Whether a motor protein in fact moves back-and-
forth with a drift or almost unidirectional consecutively can be quantitatively analyzed.
Until now, there has been no quantitative means to differentiate these two types of mo-
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tion. The present theory offers a quantity method to address this issue. Taking equa-
tion (1) as an example, we can introduce a function∫ L

0

[(
D

dP(x)

dx

)2

+ (F(x)P (x))2
]

dx (27)

as the total movement of the protein. Note that the first term is associated with the
Brownian motion and the second term is associated with the unidirectional movement.
Hence their ratio quantitatively characterizes the mode of the motor movement. This
integral is known as action in the theory of large deviations [18].

6. Future work

While the detailed mathematical analysis remain to be carried out for models of
single motor movement, the mathematical analysis of a chain of motor protein is largely
unknown, except for the completely rigid chain of motors (Huxley model). The general
theory can be developed by connectingN motor proteins by springs. Such a “bead-and-
spring” model has been the theoretical foundation of polymer physics [12,49]. The late
Professor P.J. Flory was awarded the Nobel Prize in chemistry in 1974 for his contribu-
tion to this theory. The difference, however, is that a polymer is an equilibrium system,
while a chain of motors is a “living creature”. Let us denote the positions ofN mo-
tor proteins byx1, x2, . . . , xN , and the corresponding internal states byσ1, σ2, . . . , σN ,
whereσk = 0,1 for the detached and attached state of thekth motor. We, therefore, have
the dynamic equation for probabilityP(x1, σ1, x2, σ2, . . . , xN , σN, t):

∂P

∂t
=

N∑
k=1

[{
(1− σk)D− + σkD+

}∂2P

∂x2
k

− ∂

∂xk

(
σkF−(xk)
β−

+ (1− σk)F+(xk)
β+

+
{

1− σk
β+

+ σk

β−

}
η(xk−1 − 2xk + xk+1)P

)
− {(1− σk)f (x)+ σkg(x)}P(. . . , σk, . . .)
+ {(1− σk)g(x)+ σkf (x)}P(. . . ,1− σk, . . .)], (28)

whereη is a spring constant. A computational analysis of such a model can be found
in [9]. In a recent mathematical analysis, a deterministic counterpart of this system, a
chain of bead-and-spring in a periodic force field, has been shown [54,56] to exhibit
globally phase-locked motion. Equation (28) is anN-particle system which can be sub-
jected to mean-field treatment as that for theN-particle Schrödinger equation. As in the
genesis of nonlinear Schrödinger equation [58], such treatment will lead to a nonlinear
term in the diffusion equation [20], opening a possible new mathematical approach to
the problem of muscle contraction. In connection to the theory of probability, this is an
interacting particle system with a nonequilibrium (Gibbsian) stationary state [33], and is
a natural application for the theory of large deviations [10].
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